The Open FUSION Toolkit 1.0.0-8905cc5
Modeling tools for plasma and fusion research and engineering
|
MUG solves the linearized or full nonlinear MHD equations in three dimensions using finite elements on unstructured grids of tetrahedra or hexahedra.
MUG has two different implementations:
The following examples illustrate usage of MUG to run time-dependent resistive and Hall MHD simulations.
Below is the complete system of equations supported by the primary implementation. Most features are also supported by the Lagrange only variant.
\[ \frac{\partial n}{\partial t} + \nabla \cdot \left( n u \right) = D \nabla^2 n \]
\[ \rho \left[ \frac{\partial u}{\partial t} + u \cdot \nabla u \right] = J \times B - \nabla nk(T_e + T_i) - \nabla \cdot \Pi \]
\[ \frac{\partial B}{\partial t} = - \nabla \times \left( -u \times B + \eta J + \frac{1}{ne} \left( J \times B - \nabla nkT_e \right) + \frac{m_e}{ne^2} \frac{\partial J}{\partial t} \right) \]
\[ \frac{n}{\gamma-1} \left[ \frac{\partial T_i}{\partial t} + u \cdot \nabla T_i \right] = -nkT_i \nabla \cdot u - \nabla \cdot q_i + Q_i \]
For two temperature
\[ \frac{n}{\gamma-1} \left[ \frac{\partial T_e}{\partial t} + u_e \cdot \nabla T_e \right] = -nkT_e \nabla \cdot u_e - \nabla \cdot q_e + Q_e \]
\[ u_e = u - \frac{J}{ne} \]
Thermal transport
\[ q_s = - n \left[ \chi_{\parallel,s} \hat{b} \hat{b} + \chi_{\perp,s} \left( I - \hat{b} \hat{b} \right) \right] \cdot \nabla T_s \]
With xmhd_brag=T
and single temperature ( \( T_e = T_i \))
\[ \chi_{\parallel,i} = \chi_{\parallel,e}, \chi_{\perp,i} = min(\chi_{\perp,i},\chi_{\parallel,i}) \]
Heat sources
For single temperature ( \( T_e = T_i \))
\[ Q_i = \left[ \eta J^2 - \left( \nabla u \right)^T : \Pi \right] / 2 \]
For two temperature
\[ Q_i = - \left( \nabla u \right)^T : \Pi, Q_e = \eta J^2 \]
Viscosity
\[ W = \left( \nabla u + (\nabla u)^T - \frac{2}{3} I \nabla \cdot u \right) \]
With ‘visc_type='kin’`
\[ \Pi = - \nu \nabla u \]
With ‘visc_type='iso’`
\[ \Pi = - \nu W \]
With ‘visc_type='ani’`
\[ \Pi = - \left[ \nu_{\parallel} \hat{b} \hat{b} + \nu_{\perp} \left( I - \hat{b} \hat{b} \right) \right] \cdot W \]
where \( \mathcal{P} \), \( \mathcal{S} \), and \( \mathcal{C} \) are axisymmetric domains corresponding to the plasma, passive conducting structures (eg. vacuum vessels), coils respectively.