|
The Open FUSION Toolkit 1.0.0-beta6
Modeling tools for plasma and fusion research and engineering
|
H^1 FE operator definitions.
Data Types | |
| type | oft_h1_ginterp |
| Interpolate \( \nabla \) of a H^1 field. More... | |
| type | oft_h1_rinterp |
| Interpolate a H^1 field. More... | |
| type | oft_h1_zerob |
| Needs docs. More... | |
| type | oft_h1_zerogrnd |
| Needs docs. More... | |
| type | oft_h1_zeroi |
| Needs docs. More... | |
Functions/Subroutines | |
| subroutine | ginterp_apply (self, cell, f, gop, val) |
| Reconstruct the gradient of a H^1 scalar field. | |
| subroutine | h1_base_pop (self, acors, afine) |
| Transfer a base level H^1 scalar field to the next MPI level. | |
| subroutine | h1_base_push (self, afine, acors) |
| Transfer a MPI level H^1 scalar field to the base level. | |
| subroutine | h1_getlop_pre (ml_h1_rep, pre, mats, bc_type, level, nlevels) |
| Compute eigenvalues and smoothing coefficients for the operator H^1::LOP. | |
| subroutine | h1_lop_eigs (ml_h1_rep, minlev) |
| Compute eigenvalues and smoothing coefficients for the operator H^1::LOP. | |
| subroutine | h1_mloptions |
| Read-in options for the basic H^1 ML preconditioners. | |
| subroutine | h1_setup_interp (ml_h1_rep) |
| Construct interpolation matrices for transfer between H^1 finite element spaces. | |
| subroutine | oft_h1_getlop (fe_rep, mat, bc) |
| Construct laplacian matrix for H^1 scalar representation. | |
| subroutine | oft_h1_getmop (fe_rep, mat, bc) |
| Construct mass matrix for H^1 scalar representation. | |
| subroutine | oft_h1_project (fe_rep, field, x) |
| Project a scalar field onto a H^1 basis. | |
| subroutine | rinterp_apply (self, cell, f, gop, val) |
| Reconstruct a H^1 scalar field. | |
| subroutine | rinterp_delete (self) |
| Destroy temporary internal storage. | |
| subroutine | rinterp_setup (self, h1_rep) |
| Setup interpolator for H^1 scalar fields. | |
| subroutine | zerob_apply (self, a) |
| Zero a H^1 scalar field at all boundary nodes. | |
| subroutine | zerob_delete (self) |
| Zero a H^1 scalar field at all boundary nodes. | |
| subroutine | zerogrnd_apply (self, a) |
| Zero a H^1 scalar field at the global grounding node. | |
| subroutine | zeroi_apply (self, a) |
| Zero a H^1 scalar field at all interior nodes. | |
Variables | |
| real(r8), dimension(fem_max_levels) | df_lop =-1.d99 |
| integer(i4), dimension(fem_max_levels) | nu_lop =0 |
| real(r8), dimension(:,:), pointer | oft_h1_gop => NULL() |
| real(r8), dimension(:), pointer | oft_h1_rop => NULL() |
| subroutine ginterp_apply | ( | class(oft_h1_ginterp), intent(inout) | self, |
| integer(i4), intent(in) | cell, | ||
| real(r8), dimension(:), intent(in) | f, | ||
| real(r8), dimension(3,4), intent(in) | gop, | ||
| real(r8), dimension(:), intent(out) | val | ||
| ) |
Reconstruct the gradient of a H^1 scalar field.
| [in] | cell | Cell for interpolation |
| [in] | f | Position in cell in logical coord [4] |
| [in] | gop | Logical gradient vectors at f [3,4] |
| [out] | val | Reconstructed field at f [3] |
| subroutine h1_base_pop | ( | class(oft_ml_fe_vecspace), intent(inout) | self, |
| class(oft_vector), intent(inout) | acors, | ||
| class(oft_vector), intent(inout) | afine | ||
| ) |
Transfer a base level H^1 scalar field to the next MPI level.
| [in,out] | acors | Vector to transfer |
| [in,out] | afine | Fine vector from transfer |
| subroutine h1_base_push | ( | class(oft_ml_fe_vecspace), intent(inout) | self, |
| class(oft_vector), intent(inout) | afine, | ||
| class(oft_vector), intent(inout) | acors | ||
| ) |
Transfer a MPI level H^1 scalar field to the base level.
| [in,out] | afine | Vector to transfer |
| [in,out] | acors | Fine vector from transfer |
| subroutine h1_getlop_pre | ( | type(oft_ml_fem_type), intent(inout), target | ml_h1_rep, |
| class(oft_solver), intent(out), pointer | pre, | ||
| type(oft_matrix_ptr), dimension(:), intent(inout), pointer | mats, | ||
| character(len=*), intent(in) | bc_type, | ||
| integer(i4), intent(in), optional | level, | ||
| integer(i4), intent(in), optional | nlevels | ||
| ) |
Compute eigenvalues and smoothing coefficients for the operator H^1::LOP.
| [in] | bc_type | Boundary condition |
| subroutine h1_lop_eigs | ( | type(oft_ml_fem_type), intent(inout), target | ml_h1_rep, |
| integer(i4), intent(in) | minlev | ||
| ) |
Compute eigenvalues and smoothing coefficients for the operator H^1::LOP.
| subroutine h1_mloptions |
Read-in options for the basic H^1 ML preconditioners.
| subroutine h1_setup_interp | ( | class(oft_ml_fem_type), intent(inout) | ml_h1_rep | ) |
Construct interpolation matrices for transfer between H^1 finite element spaces.
| subroutine oft_h1_getlop | ( | class(oft_afem_type), intent(inout), target | fe_rep, |
| class(oft_matrix), intent(inout), pointer | mat, | ||
| character(len=*), intent(in) | bc | ||
| ) |
Construct laplacian matrix for H^1 scalar representation.
Supported boundary conditions
Full matrix -'zerob'Dirichlet for all boundary DOF -'grnd'` Dirichlet for only groundin point | [in,out] | mat | Matrix object |
| [in] | bc | Boundary condition |
| subroutine oft_h1_getmop | ( | class(oft_afem_type), intent(inout), target | fe_rep, |
| class(oft_matrix), intent(inout), pointer | mat, | ||
| character(len=*), intent(in) | bc | ||
| ) |
Construct mass matrix for H^1 scalar representation.
Supported boundary conditions
Full matrix -'zerob'` Dirichlet for all boundary DOF | [in,out] | mat | Matrix object |
| [in] | bc | Boundary condition |
| subroutine oft_h1_project | ( | class(oft_afem_type), intent(inout), target | fe_rep, |
| class(fem_interp), intent(inout) | field, | ||
| class(oft_vector), intent(inout) | x | ||
| ) |
Project a scalar field onto a H^1 basis.
| [in,out] | field | Vector field for projection |
| [in,out] | x | Field projected onto H^1 basis |
| subroutine rinterp_apply | ( | class(oft_h1_rinterp), intent(inout) | self, |
| integer(i4), intent(in) | cell, | ||
| real(r8), dimension(:), intent(in) | f, | ||
| real(r8), dimension(3,4), intent(in) | gop, | ||
| real(r8), dimension(:), intent(out) | val | ||
| ) |
Reconstruct a H^1 scalar field.
| [in] | cell | Cell for interpolation |
| [in] | f | Position in cell in logical coord [4] |
| [in] | gop | Logical gradient vectors at f [3,4] |
| [out] | val | Reconstructed field at f [1] |
| subroutine rinterp_delete | ( | class(oft_h1_rinterp), intent(inout) | self | ) |
Destroy temporary internal storage.
| subroutine rinterp_setup | ( | class(oft_h1_rinterp), intent(inout) | self, |
| class(oft_afem_type), intent(inout), target | h1_rep | ||
| ) |
Setup interpolator for H^1 scalar fields.
Fetches local representation used for interpolation from vector object
| subroutine zerob_apply | ( | class(oft_h1_zerob), intent(inout) | self, |
| class(oft_vector), intent(inout) | a | ||
| ) |
Zero a H^1 scalar field at all boundary nodes.
| [in,out] | a | Field to be zeroed |
| subroutine zerob_delete | ( | class(oft_h1_zerob), intent(inout) | self | ) |
Zero a H^1 scalar field at all boundary nodes.
| subroutine zerogrnd_apply | ( | class(oft_h1_zerogrnd), intent(inout) | self, |
| class(oft_vector), intent(inout) | a | ||
| ) |
Zero a H^1 scalar field at the global grounding node.
| [in,out] | a | Field to be zeroed |
| subroutine zeroi_apply | ( | class(oft_h1_zeroi), intent(inout) | self, |
| class(oft_vector), intent(inout) | a | ||
| ) |
Zero a H^1 scalar field at all interior nodes.
| [in,out] | a | Field to be zeroed |
| real(r8), dimension(fem_max_levels) df_lop =-1.d99 |
| integer(i4), dimension(fem_max_levels) nu_lop =0 |
| real(r8), dimension(:,:), pointer oft_h1_gop => NULL() |
| real(r8), dimension(:), pointer oft_h1_rop => NULL() |