The Open FUSION Toolkit 1.0.0-8905cc5
Modeling tools for plasma and fusion research and engineering
|
Hexhedral mesh definitions.
Data Types | |
type | oft_hexmesh |
Hexahedral volume mesh type. More... | |
Functions/Subroutines | |
subroutine, public | hex_3d_grid (order, xnodes, inodesp, inodese, inodesf, inodesc) |
Needs docs. | |
pure real(r8) function, dimension(6), public | hex_get_bary (flog) |
Map from orthogonal logical coordinates to barycentric logical coordinates. | |
pure real(r8) function, dimension(3), public | hex_get_bary_cgop (cglog, i, j) |
Map gradient cross-products from orthogonal logical coordinates to barycentric logical coordinates. | |
pure real(r8) function, dimension(3, 6), public | hex_get_bary_gop (glog) |
Map gradients from orthogonal logical coordinates to barycentric logical coordinates. | |
subroutine, public | hex_grid_forient (oflag, order, finds) |
Needs docs. | |
subroutine | hex_grid_forient_inv (oflag, order, finds) |
Needs docs. | |
subroutine | hexmesh_ctang (self, cell, ind, f, tang) |
Compute the curve tangent vector for a given edge on a cell. | |
subroutine | hexmesh_g2inv (jac, a) |
Expand and invert the matrix for the grid Hessian. | |
subroutine | hexmesh_get_surf_map (self, face, cell, lmap) |
Get mapping between boundary and volume logical coordinates. | |
subroutine | hexmesh_hessian (self, cell, f, g2op, k) |
Compute the spatial hessian matrices for a given cell at a given logical position. | |
integer(i4) function | hexmesh_in_cell (self, f, tol) |
Test if logical position lies within the base cell. | |
subroutine | hexmesh_invert_cell (self, cell) |
Turn cell "inside out", used to ensure consistent orientations. | |
subroutine | hexmesh_jacinv (a, c, j) |
Invert a 3x3 matrix. | |
subroutine | hexmesh_jacobian (self, cell, f, gop, j) |
Compute the spatial jacobian matrix and its determinant for a given cell at a given logical position. | |
real(r8) function, dimension(3) | hexmesh_log2phys (self, cell, f) |
Map from logical to physical coordinates in a given cell. | |
subroutine | hexmesh_phys2log (self, cell, pt, f) |
Map from physical to logical coordinates in a given cell. | |
real(r8) function, dimension(4) | hexmesh_phys2logho (self, cell, pt) |
Implementation of hexmesh_phys2log. | |
subroutine | hexmesh_quad_rule (self, order, quad_rule) |
Retrieve suitable quadrature rule for mesh with given order. | |
subroutine | hexmesh_set_order (self, order) |
Set maximum order of spatial mapping. | |
subroutine | hexmesh_setup (self, cad_type) |
Setup mesh with implementation specifics (cell_np , cell_ne , etc.) | |
subroutine | hexmesh_snormal (self, cell, ind, f, norm) |
Compute the surface normal vector for a given face on a cell. | |
subroutine | hexmesh_surf_to_vol (self, fsurf, lmap, fvol) |
Map between surface and volume logical coordinates. | |
subroutine | hexmesh_tessellate (self, rtmp, lctmp, order) |
Tessellate mesh onto lagrange FE nodes of specified order (usually for plotting) | |
integer(i4) function, dimension(2) | hexmesh_tessellated_sizes (self) |
Get sizes of arrays returned by tetmesh_tessellate. | |
subroutine | hexmesh_vlog (self, i, f) |
Get position in logical space of vertex i | |
subroutine | tm_findcell_error (m, n, uv, err, iflag) |
Evalute the error between a logical point and the current active point. | |
Variables | |
integer(i4), private | active_cell = 0 |
Active cell for high order find_cell. | |
class(oft_hexmesh), pointer, private | active_mesh => NULL() |
Active mesh for high order find_cell. | |
real(r8), dimension(3), private | active_pt = 0.d0 |
Active point for high order find_cell. | |
integer(i4), dimension(2, 12), parameter, public | hex_bary_ecoords = RESHAPE((/ 5,3, 2,4, 3,5, 4,2, 1,6, 1,6, 1,6, 1,6, 5,3, 2,4, 3,5, 4,2/), (/2,12/)) |
integer(i4), dimension(2, 12), parameter, public | hex_bary_efcoords = RESHAPE((/ 1,2, 1,3, 1,4, 1,5, 2,5, 2,3, 3,4, 4,5, 2,6, 3,6, 4,6, 5,6/), (/2,12/)) |
integer(i4), dimension(4, 6), parameter, public | hex_bary_fcoords = RESHAPE((/ 5,2,3,4, 1,5,6,3, 1,2,6,4, 1,3,6,5, 2,1,4,6, 2,5,4,3/), (/4,6/)) |
integer(i4), dimension(6), parameter | hex_bary_map = (/-3,-2,1, 2,-1,3/) |
integer(i4), dimension(3, 8), parameter, public | hex_bary_pfcoords = RESHAPE((/ 1,2,5, 1,2,3, 1,3,4, 1,4,5, 2,5,6, 2,3,6, 3,4,6, 4,5,6/), (/3,8/)) |
integer(i4), dimension(2, 12), parameter | hex_ed =RESHAPE((/ 1,2, 2,3, 3,4, 4,1, 1,5, 2,6, 3,7, 4,8, 5,6, 6,7, 7,8, 8,5/), (/2,12/)) |
integer(i4), dimension(4, 6), parameter | hex_fc =RESHAPE((/ 1,2,3,4, 1,5,6,2, 2,6,7,3, 3,7,8,4, 1,4,8,5, 5,8,7,6/), (/4,6/)) |
integer(i4), dimension(4, 6), parameter | hex_fe =RESHAPE((/ 1,2,3,4, 5,9,-6,-1, 6,10,-7,-2, 7,11,-8,-3, -4,8,12,-5, -12,-11,-10,-9/), (/4,6/)) |
real(r8), parameter, private | ho_find_du =1.d-6 |
Step size used for jacobian eval during high order find_cell. | |
integer(i4), parameter, private | ho_find_nsteps =100 |
Maximum number of steps during high order find_cell. | |
real(r8), parameter, private | ho_find_tol =1.d-6 |
Convergence tolerance for high order find_cell. | |
integer(i4), dimension(3, 8), parameter | inodes1p = RESHAPE((/ 1,1,1, 2,1,1, 2,2,1, 1,2,1, 1,1,2, 2,1,2, 2,2,2, 1,2,2/), (/3,8/)) |
integer(i4), dimension(3, 12), parameter | inodes2e = RESHAPE((/ 2,1,1, 3,2,1, 2,3,1, 1,2,1, 1,1,2, 3,1,2, 3,3,2, 1,3,2, 2,1,3, 3,2,3, 2,3,3, 1,2,3/), (/3,12/)) |
integer(i4), dimension(3, 6), parameter | inodes2f = RESHAPE((/ 2,2,1, 2,1,2, 3,2,2, 2,3,2, 1,2,2, 2,2,3/), (/3,6/)) |
integer(i4), dimension(3, 8), parameter | inodes2p = RESHAPE((/ 1,1,1, 3,1,1, 3,3,1, 1,3,1, 1,1,3, 3,1,3, 3,3,3, 1,3,3/), (/3,8/)) |
integer(i4), dimension(3, 8), parameter | inodesp_base = RESHAPE((/ 0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1/), (/3,8/)) |
integer(i4), dimension(2, 4), parameter | quad_ed =RESHAPE((/1,2, 2,3, 3,4, 4,1/), (/2,4/)) |
Quad edge list. | |
subroutine, public hex_3d_grid | ( | integer(i4), intent(in) | order, |
real(r8), dimension(:), intent(out), pointer | xnodes, | ||
integer(i4), dimension(3,8), intent(out) | inodesp, | ||
integer(i4), dimension(:,:,:), intent(out), pointer | inodese, | ||
integer(i4), dimension(:,:,:), intent(out), pointer | inodesf, | ||
integer(i4), dimension(:,:), intent(out), pointer | inodesc | ||
) |
Needs docs.
pure real(r8) function, dimension(6), public hex_get_bary | ( | real(r8), dimension(:), intent(in) | flog | ) |
Map from orthogonal logical coordinates to barycentric logical coordinates.
[in] | flog | Position in orthogonal logical coordinates [3] |
pure real(r8) function, dimension(3), public hex_get_bary_cgop | ( | real(r8), dimension(3,3), intent(in) | cglog, |
integer(i4), intent(in) | i, | ||
integer(i4), intent(in) | j | ||
) |
Map gradient cross-products from orthogonal logical coordinates to barycentric logical coordinates.
[in] | cglog | Crossed-gradients in orthogonal logical coordinates [3,3] |
[in] | i | First barycentric coordinate |
[in] | j | Second barycentric coordinate |
i
and j
[3] pure real(r8) function, dimension(3,6), public hex_get_bary_gop | ( | real(r8), dimension(:,:), intent(in) | glog | ) |
Map gradients from orthogonal logical coordinates to barycentric logical coordinates.
[in] | glog | Gradients in orthogonal logical coordinates [3,3] |
subroutine, public hex_grid_forient | ( | integer(i4), intent(in) | oflag, |
integer(i4), intent(in) | order, | ||
integer(i4), dimension(:), intent(inout) | finds | ||
) |
Needs docs.
|
private |
Needs docs.
|
private |
Compute the curve tangent vector for a given edge on a cell.
If edge is not a global boundary edge the function returns with tang = 0
[in] | self | Mesh object |
[in] | cell | Index of cell |
[in] | ind | Index of edge within cell |
[in] | f | Logical coordinate in cell [4] |
[out] | tang | Unit vector tangent to the edge [3] |
|
private |
Expand and invert the matrix for the grid Hessian.
|
private |
Get mapping between boundary and volume logical coordinates.
[in] | self | Mesh object |
[in] | face | Index of face on boundary mesh |
[out] | cell | Cell containing face |
[out] | lmap | Coordinate mapping |
|
private |
Compute the spatial hessian matrices for a given cell at a given logical position.
[in] | self | Mesh object |
[in] | cell | Index of cell for evaulation |
[in] | f | Logical coordinate in cell [4] |
[out] | g2op | Second order Jacobian matrix \( (\frac{\partial x_i}{\partial \lambda_l} \frac{\partial x_j}{\partial \lambda_k})^{-1} \) |
[out] | k | Gradient correction matrix \( \frac{\partial^2 x_i}{\partial \lambda_k \partial \lambda_l}\) [10,3] |
|
private |
Test if logical position lies within the base cell.
f
is inside the base cell? [in] | self | Mesh object |
[in] | f | Logical coordinate to evaluate |
[in] | tol | Tolerance for test |
|
private |
Turn cell "inside out", used to ensure consistent orientations.
[in,out] | self | Mesh object |
[in] | cell | Index of cell to invert |
|
private |
Invert a 3x3 matrix.
[in] | a | Matrix to invert |
[out] | c | \( A^{-1} \) |
[out] | j | |A| |
|
private |
Compute the spatial jacobian matrix and its determinant for a given cell at a given logical position.
[in] | self | Mesh object |
[in] | cell | Index of cell for evaulation |
[in] | f | Logical coordinate in cell [4] |
[out] | gop | Jacobian matrix \( (\frac{\partial x_i}{\partial \lambda_j})^{-1} \) [3,4] |
[out] | j | Jacobian of transformation from logical to physical coordinates |
|
private |
Map from logical to physical coordinates in a given cell.
[in] | self | Mesh object |
[in] | cell | Index of cell for evaulation |
[in] | f | Logical coordinate in cell [4] |
|
private |
Map from physical to logical coordinates in a given cell.
[in] | self | Mesh object |
[in] | cell | Index of cell for evaulation |
[in] | pt | Physical position [3] |
[out] | f | Logical coordinates within the cell [4] |
|
private |
Implementation of hexmesh_phys2log.
The MINPACK package is used with step size given by ho_find_du. The convergence tolerance is set by the variable ho_find_tol.
[in] | self | Mesh object |
[in] | cell | Index of cell for evaulation |
[in] | pt | Physical position [3] |
|
private |
Retrieve suitable quadrature rule for mesh with given order.
[in] | self | Mesh object |
[in] | order | Desired order of quadrature rule |
[out] | quad_rule | Resulting quadrature rule |
|
private |
Set maximum order of spatial mapping.
[in,out] | self | Mesh object |
[in] | order | Maximum order of spatial mapping |
|
private |
Setup mesh with implementation specifics (cell_np
, cell_ne
, etc.)
[in,out] | self | Mesh object |
[in] | cad_type | CAD/mesh interface ID number |
|
private |
Compute the surface normal vector for a given face on a cell.
If face is not a global boundary face the function returns with norm = 0
[in] | self | Mesh object |
[in] | cell | Index of cell |
[in] | ind | Index of face within cell |
[in] | f | Logical coordinate in cell [4] |
[out] | norm | Unit vector normal to the face [3] |
|
private |
Map between surface and volume logical coordinates.
[in] | self | Mesh object |
[in] | fsurf | Surface coordinates [2] |
[in] | lmap | Coordinate mapping |
[out] | fvol | Volume coordinates [3] |
|
private |
Tessellate mesh onto lagrange FE nodes of specified order (usually for plotting)
[in] | self | Mesh to tessellate |
[out] | rtmp | Tessellated point list [3,:] |
[out] | lctmp | Tessellated cell list [8,:] |
[in] | order | Tessellation order |
|
private |
Get sizes of arrays returned by tetmesh_tessellate.
[in] | self | Mesh object |
|
private |
Get position in logical space of vertex i
[in] | self | Mesh object |
[in] | i | Vertex to locate |
[out] | f | Logical coordinates of vertex i |
|
private |
Evalute the error between a logical point and the current active point.
[in] | m | Number of spatial dimensions (3) |
[in] | n | Number of parametric dimensions (3) |
[in] | uv | Parametric position [n] |
[out] | err | Error vector between current and desired point [3] |
[in,out] | iflag | Unused flag |
|
private |
Active cell for high order find_cell.
|
private |
Active mesh for high order find_cell.
|
private |
Active point for high order find_cell.
integer(i4), dimension(2,12), parameter, public hex_bary_ecoords = RESHAPE((/ 5,3, 2,4, 3,5, 4,2, 1,6, 1,6, 1,6, 1,6, 5,3, 2,4, 3,5, 4,2/), (/2,12/)) |
integer(i4), dimension(2,12), parameter, public hex_bary_efcoords = RESHAPE((/ 1,2, 1,3, 1,4, 1,5, 2,5, 2,3, 3,4, 4,5, 2,6, 3,6, 4,6, 5,6/), (/2,12/)) |
integer(i4), dimension(4,6), parameter, public hex_bary_fcoords = RESHAPE((/ 5,2,3,4, 1,5,6,3, 1,2,6,4, 1,3,6,5, 2,1,4,6, 2,5,4,3/), (/4,6/)) |
|
private |
integer(i4), dimension(3,8), parameter, public hex_bary_pfcoords = RESHAPE((/ 1,2,5, 1,2,3, 1,3,4, 1,4,5, 2,5,6, 2,3,6, 3,4,6, 4,5,6/), (/3,8/)) |
integer(i4), dimension(2,12), parameter hex_ed =RESHAPE((/ 1,2, 2,3, 3,4, 4,1, 1,5, 2,6, 3,7, 4,8, 5,6, 6,7, 7,8, 8,5/), (/2,12/)) |
|
private |
|
private |
|
private |
Step size used for jacobian eval during high order find_cell.
|
private |
Maximum number of steps during high order find_cell.
|
private |
Convergence tolerance for high order find_cell.
|
private |
|
private |
|
private |
|
private |
|
private |
|
private |
Quad edge list.