The Open FUSION Toolkit 1.0.0-8905cc5
Modeling tools for plasma and fusion research and engineering
Loading...
Searching...
No Matches
Data Types | Functions/Subroutines | Variables
axi_green Module Reference

Detailed Description

Object and supporting functions for axisymmetric coil sets.

Authors
Chris Hansen
Date
March 2014

Data Types

type  axi_coil_set
 Needs Docs. More...
 

Functions/Subroutines

real(r8) function elle (phi, ak)
 Legendre elliptic integral of the 2nd kind E(; j), evaluated using Carlson's functions RD and RF. The argument ranges are 0 =2, 0 ksin 1.
 
real(r8) function ellf (phi, ak)
 Legendre elliptic integral of the 1st kind F(; k), evaluated using Carlson's function RF. The argument ranges are 0 =2, 0 ksin 1.
 
subroutine, public grad_green (r, z, rc, zc, fg, gg)
 Evaluate gradient of Green's function for axisymmetric current filament.
 
real(r8) function, public green (r, z, rc, zc)
 Evaluate Green's function for axisymmetric current filament.
 
real(r8) function, public green_brute (r, z, rc, zc)
 Evaluate Green's function using brute force integration with 360 points.
 
real(r8) function rd (x, y, z)
 Computes Carlson's elliptic integral of the second kind, RD(x; y; z). x and y must be nonnegative, and at most one can be zero. z must be positive. TINY must be at least twice the negative 2/3 power of the machine overflow limit. BIG must be at most 0:1ERRTOL times the negative 2/3 power of the machine underflow limit.
 
real(r8) function rf (x, y, z)
 Computes Carlson's elliptic integral of the first kind, RF(x; y; z). x, y, and z must be nonnegative, and at most one can be zero. TINY must be at least 5 times the machine undeflow limit, BIG at most one fifth the machine overflow limit.
 

Variables

real(r8), parameter roff = 1.d-13
 

Function/Subroutine Documentation

◆ elle()

real(r8) function elle ( real(r8), intent(in)  phi,
real(r8), intent(in)  ak 
)
private

Legendre elliptic integral of the 2nd kind E(; j), evaluated using Carlson's functions RD and RF. The argument ranges are 0 =2, 0 ksin 1.

◆ ellf()

real(r8) function ellf ( real(r8), intent(in)  phi,
real(r8), intent(in)  ak 
)
private

Legendre elliptic integral of the 1st kind F(; k), evaluated using Carlson's function RF. The argument ranges are 0 =2, 0 ksin 1.

◆ grad_green()

subroutine, public grad_green ( real(r8), intent(in)  r,
real(r8), intent(in)  z,
real(r8), intent(in)  rc,
real(r8), intent(in)  zc,
real(r8), intent(out)  fg,
real(r8), dimension(2), intent(out)  gg 
)

Evaluate gradient of Green's function for axisymmetric current filament.

See also
green
Parameters
[in]rRadial location of observation point
[in]zVertical location of observation point
[in]rcRadial location of filament
[in]zcRadial location of filament
[out]fgValue of Green's function
[out]ggGradient of Green's function

◆ green()

real(r8) function, public green ( real(r8), intent(in)  r,
real(r8), intent(in)  z,
real(r8), intent(in)  rc,
real(r8), intent(in)  zc 
)

Evaluate Green's function for axisymmetric current filament.

Legendre elliptic integral of the 2nd kind E(; k), evaluated using Carlson's functions RD and RF. The argument ranges are 0 =2, 0 ksin 1.

Parameters
[in]rRadial location of observation point
[in]zVertical location of observation point
[in]rcRadial location of filament
[in]zcRadial location of filament
Returns
Value of Green's function

◆ green_brute()

real(r8) function, public green_brute ( real(r8), intent(in)  r,
real(r8), intent(in)  z,
real(r8), intent(in)  rc,
real(r8), intent(in)  zc 
)

Evaluate Green's function using brute force integration with 360 points.

Parameters
[in]rRadial location of observation point
[in]zVertical location of observation point
[in]rcRadial location of filament
[in]zcRadial location of filament
Returns
Value of Green's function

◆ rd()

real(r8) function rd ( real(r8), intent(in)  x,
real(r8), intent(in)  y,
real(r8), intent(in)  z 
)
private

Computes Carlson's elliptic integral of the second kind, RD(x; y; z). x and y must be nonnegative, and at most one can be zero. z must be positive. TINY must be at least twice the negative 2/3 power of the machine overflow limit. BIG must be at most 0:1ERRTOL times the negative 2/3 power of the machine underflow limit.

◆ rf()

real(r8) function rf ( real(r8), intent(in)  x,
real(r8), intent(in)  y,
real(r8), intent(in)  z 
)
private

Computes Carlson's elliptic integral of the first kind, RF(x; y; z). x, y, and z must be nonnegative, and at most one can be zero. TINY must be at least 5 times the machine undeflow limit, BIG at most one fifth the machine overflow limit.

Variable Documentation

◆ roff

real(r8), parameter roff = 1.d-13